β -Nicotinamide mononucleotide

Cat. No.:	HY-F0004
CAS No.:	1094-61-7
Molecular Formula:	C ₁₁ H ₁₅ N ₂ O ₈ P
Molecular Weight:	334.22
Target:	Endogenous Metabolite
Pathway:	Metabolic Enzyme/Protease
Storage:	4°C, protect from light * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

Preparing Stock Solutions		Mass Solvent Concentration	1 mg	5 mg	10 mg	
		1 mM	2.9920 mL	14.9602 mL	29.9204 mL	
		5 mM	0.5984 mL	2.9920 mL	5.9841 mL	
	10 mM	0.2992 mL	1.4960 mL	2.9920 mL		
P	lease refer to the sol	ubility information to select the app	propriate solvent.	i	i	
Vivo	1. Add each solvent o	one by one: PBS				
VIVO	1. Add each solvent one by one: PBS Solubility: 100 mg/mL (299.20 mM); Clear solution; Need ultrasonic					

BIOLOGICAL ACTIVITY		
Description	β-nicotinamide mononucleotide (β-NM) is a product of the nicotinamide phosphoribosyltransferase (NAMPT) reaction and a key NAD ⁺ intermediate. The pharmacological activities of β-nicotinamide mononucleotide include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity ^[1] .	
IC₅₀ & Target	Human Endogenous Metabolite	
In Vitro	β-nicotinamide mononucleotide has several beneficial pharmacological activities. Mostly mediated by its involvement in NAD ⁺ biosynthesis, the pharmacological activities of NMN include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity ^[1] . The intracellular NAD ⁺ levels are significantly decreased by knockdown or knockout of Nampt (Nampt KD or Nampt KO) or treatment with Nampt inhibitor FK866, whereas NAD ⁺ levels are dramatically increased by supplement of NAD ⁺ precursors NAM or NMN (0.5-1 mM). NAD ⁺ precursor NMN treatment inhibited CD8 ⁺ T cells activation and function ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

OH OH

0

NH₂

In Vivo

 β -Nicotinamide mononucleotide (500 mg/kg; i.p.; 3 times per week for 7-10 week) prevents mtDNA damage and Dox-induced cardiac dysfunction^[3].

Nampt KO markedly inhibits tumor progression, whereas Nampt metabolite β -Nicotinamide mononucleotide (300 mg/kg body weight; i.p.; once every two days for 2 weeks) significantly promotes tumor growth in C57BL/6 mice (bearing wildtype Hepa1-6 cells). The reduction and increase in NAD⁺ level of respective Nampt KO and β -Nicotinamide mononucleotide-treated tumors are confirmed^[2].

 β -nicotinamide mononucleotide ameliorates glucose intolerance by restoring NAD⁺ levels in HFD-induced T2D mice. β nicotinamide mononucleotide also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C57BL6 mice (p53 ^{-/-} mice) ^[3]
Dosage:	500 mg/kg
Administration:	I.p.; 3 times per week for 7-10 week
Result:	Prevented the significant decline in cardiac function of Dox-treated p53 ^{-/-} mice (study week 7 versus 10) along with rescuing the decreased mitochondrial respiration and tissue ATP depletion caused by Doxorubicin (Dox).

CUSTOMER VALIDATION

- Cell Metab. 2021 Jan 5;33(1):110-127.e5.
- Nat Commun. 2023 Jan 16;14(1):240.
- Nat Commun. 2022 Aug 6;13(1):4583.
- Hepatology. 2022 Jul 11.
- Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19626-19634.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Poddar SK, et al. Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules. 2019;9(1):34. Published 2019 Jan 21.

[2]. Lv H, et al. NAD+ Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion [published online ahead of print, 2020 Nov 3]. Cell Metab. 2020;S1550-4131(20)30554-4.

[3]. Li J, et al. p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci U S A. 2019;116(39):19626-19634.

[4]. Yoshino J, et al Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528-536.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA