Proteins

Inhibitors

MK2-IN-1 hydrochloride

Cat. No.: HY-12834A

CAS No.: 1314118-94-9 Molecular Formula: $C_{27}H_{26}Cl_2N_4O_2$

Molecular Weight: 509.43

Target: MAPKAPK2 (MK2); HSP

Pathway: MAPK/ERK Pathway; Cell Cycle/DNA Damage; Metabolic Enzyme/Protease

Storage: 4°C, stored under nitrogen

* In solvent : -80°C, 2 years; -20°C, 1 year (stored under nitrogen)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

 $H_2O : \ge 100 \text{ mg/mL} (196.30 \text{ mM})$

DMSO: 100 mg/mL (196.30 mM; Need ultrasonic) * "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9630 mL	9.8149 mL	19.6298 mL
	5 mM	0.3926 mL	1.9630 mL	3.9260 mL
	10 mM	0.1963 mL	0.9815 mL	1.9630 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.67 mg/mL (3.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.67 mg/mL (3.28 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.67 mg/mL (3.28 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

MK2-IN-1 hydrochloride (compound 1) is a potent and selecitve MAPKAPK2 (MK2) inhibitor with an IC₅₀ of 0.11 uM for MK2 and an EC₅₀ of 0.35 uM for pHSP27. MK2-IN-1 hydrochloride impaires the phosphorylation level of serine residues in the Tfcp2l1 protein^{[1][2]}.

In Vitro

MK2-IN-1 (purchased from MCE; 5 μM; 0.5-8 h) hydrochloride gradually increases Tfcp2l1 protein level without a change in the Tfcp2l1 transcript level within 2 h^[2].

MK2-IN-1 hydrochloride induces more alkaline phosphatase (AP)-positive colonies than the other factors in a short time^[2].

MCE has not independed Western Blot Analysis ^[2]	ntly confirmed the accuracy of these methods. They are for reference only.		
Cell Line:	46C mouse embryonic stem cells (mESCs)		
Concentration:	5 μΜ		
Incubation Time:	0.5, 1, 2, 8 h		
Result:	The Tfcp2l1 protein level gradually increased without a change in the Tfcp2l1 transcript level within 2 h.		

CUSTOMER VALIDATION

- Cell Death Dis. 2021 Oct 23;12(11):994.
- Cell Rep. 2021 Nov 2;37(5):109949.
- J Pharmacol Exp Ther. 2019 Aug;370(2):219-230.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Yan Zhang, et al. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep. 2021 Nov 2;37(5):109949.

[2]. Rao AU, et al. Facile synthesis of tetracyclic azepine and oxazocine derivatives and their potential as MAPKAP-K2 (MK2) inhibitors. Bioorg Med Chem Lett. 2012 Jan 15;22(2):1068-72.

[3]. Huang X, et al. A three-step protocol for lead optimization: quick identification of key conformational features and functional groups in the SAR studies of non-ATP competitive MK2 (MAPKAPK2) inhibitors. Bioorg Med Chem Lett. 2012 Jan 1;22(1):65-70.

[4]. Huang X, et al. Discovery and Hit-to-Lead Optimization of Non-ATP Competitive MK2 (MAPKAPK2) Inhibitors. ACS Med Chem Lett. 2011 Jun 24;2(8):632-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA